

Table des matières

Renold Couplings	3
Accouplement flexible PM	4
Application PM types	5
Arbre PM à arbre PM 0,4 à PM 130	6
Arbre PM sur arbre PM 180 à PM 7000	7
Accouplements PM pour moteur de laminoir	8-9
Données techniques	10
Données techniques PM - Blocs standard	11- 12
Données techniques PM - Blocs ronds standard	13
Variantes de conception	14
Services internationaux	15

L'innovation au quotidien

Renold fait progresser le secteur de la transmission par l'innovation depuis 1879. Renold Couplings contribue à des avancées dans le monde entier, dans les secteurs de la marine, des grues et des dispositifs de levage, de la fabrication, du transport collectif et de l'industrie papetière. Nos accouplements connectent des machines entre elles grâce à des solutions standard ou personnalisées, toutes fabriquées dans nos usines haute technologie.

Capacité d'ingénierie

Notre bureau d'étude technique veille à l'amélioration constante de notre gamme de produits existants, à l'introduction de nouveaux produits et à la fourniture de solutions innovantes pour répondre aux défis auxquels sont confrontés nos clients.

Fabricant britannique

Depuis 1946, Renold Couplings fabrique une gamme complète d'accouplements et d'engrenages.

Implantés à Cardiff, au Royaume-Uni, nous contrôlons l'ensemble du processus de conception et de fabrication, pour fournir une qualité de classe mondiale et apporter à nos clients la tranquillité d'esprit.

Soutien à l'échelle mondiale

Avec des usines de fabrication sur quatre continents et des succursales dans plus de 30 pays, Renold Couplings est en mesure de proposer un service qui comprend les exigences, les enjeux et les spécificités de votre marché.

Fiabilité

Les accouplement en caoutchouc en compression Renold sont conçus et fabriqués dans le respect des normes les plus strictes, offrant un produit de haute qualité, aux performances très élevées. Lorsqu'un fonctionnement sans problème, la tranquillité d'esprit et la longévité sont d'une importance capitale, les accouplements en caoutchouc en compression Renold sont la solution.

Accouplement flexible PM

Accouplement en acier haut rendement pour des couples allant jusqu'à 7000 KNm.

Capacité d'accouplement

- Jusqu'à un couple de 7000 kNm
- 7200 tr/min maximum
- Supérieure à un alésage de 500 mm

Applications

- Fabrication de pièces métalliques
- Mines et transformation des minéraux
- Pompes
- Ventilateurs
- Compresseurs
- · Grues et dispositifs de levage
- Industrie des pâtes et papiers
- Applications industrielles lourdes générales

Options de gamme

- · Arbre à arbre
- Bride à arbre
- Accouplement de moteur pour laminoir
- Accouplement de tambour de frein

Description de la construction

- Les accouplements PM jusqu'à PM18 sont fabriqués en fonte ductile haute résistance conforme à la norme BS EN 1563 et les accouplements PM27 et plus sont en acier moulé conforme à la norme BS 3100 A4
- Éléments en caoutchouc séparés avec choix d'épaisseur et de dureté, butadiène styrène d'une dureté Shore de 60 (SM60) étant la norme
- Éléments en caoutchouc chargés en compression
- Les éléments en caoutchouc sont totalement fermés

Caractéristiques et avantages

- Protection contre les effets de chocs sévères
- Sécurité intrinsèque
- Zéro maintenance avec des blocs de caoutchouc non collés, permettant un changement rapide et efficace des blocs en position
- · Contrôle des vibrations
- Jeu nul avec des blocs de caoutchouc pré-compressés
- Capacité de désalignement
- Faible coût
- Protection permettant d'éviter les pannes de transmission sous des couples transitoires élevés
- Assure le fonctionnement continu de la transmission dans le cas peu probable de panne ou de dommage des éléments en caoutchouc
- Sans graissage ni réglage nécessaire, les coûts d'exploitation sont bas
- Charges vibratoires faibles dans les composants de la transmission avec la sélection de caractéristiques de rigidité optimales
- Élimination des amplifications de couples par la pré-compression des éléments en caoutchouc
- Permet un désalignement axial et radial entre les machines motrices et entraînées
- L'accouplement PM offre le rapport coût/durée de vie le plus faible

Application PM types

Pont roulant de coulée

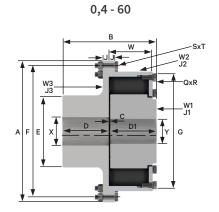
Accouplements installés à l'entrée et à la sortie du dispositif de levage principal et du long débattement

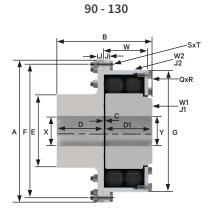
Entraînement de ventilateur

Accouplement installé entre le moteur électrique à fréquence variable et la courroie du ventilateur

Laminoir à métaux

Accouplement monté entre la boîte de vitesses et le rouleau


Parcs d'attraction



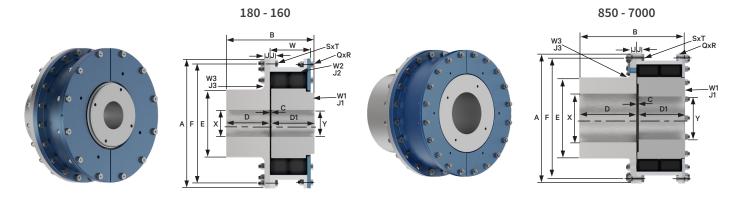
Accouplements montés sur divers manèges et attractions

Arbre PM à arbre PM 0,4 à PM 130

Dimensions, poids, inertie et alignement

Taille d'accouplement		0,4	0,7	1,3	3	6	8	12	18	27	40	60	90	130
	А	161,9	187,3	215,9	260,3	260	302	338	392	440	490	568	638	728
	В	103	110	130	143	175	193	221,5	254	290,5	329	377,5	432,5	487
	С	1	2	2	3	3	3	3,5	4	4,5	5	5,5	6,5	7
	D	51	54	64	70	86	95	109	125	143	162	186	213	240
	D1	51	54	64	70	86	95	109	125	143	162	186	213	240
	Е	76	92	108	122	135	148	168	195	220	252	288	330	373
	F	146	171,4	196,8	235	240	276	312	360	407	458	528	598	680
Dimensions (mm)	G	133	157	181	214,3	222	245	280	320	367	418	479	548	620
Dimensions (mm)	J	9,5	11	12	14,5	11	13,5	14	16	18,5	21	24	26,5	31
	Q	5	5	6	6	8	8	8	8	8	8	8	8	8
	R	M8	M8	M8	M8	M8	M10	M12	M16	M16	M16	M20	M20	M24
	S T	8 M8	8 M8	8 M8	8 M8	12 M8	12 M12	12 M12	12 M16	12 M16	16 M16	12 M20	16 M20	16 M24
	W	36	39	46	60	81	89	102	118	134	152,7	175	200	226
	MAX. X & Y (4)	41	51	64	73	85	95	109	125	143	162	186	213	240
	MIN. X (5)	27	27	35	37	50	62	68	80	90	105	120	140	160
	MIN. Y	27	27	37	40	50	55	65	70	85	105	110	140	160
Éléments en caoutchouc	Par cavité	1	1	1	1	1	1	1	1	1	1	1	2	2
Eternents en caoutenoue	Par accouplement	10	10	12	12	16	16	16	16	16	16	16	32	32
Vitesse maximale [tr/min] (1)		7200	6300	5400	4500	4480	3860	3450	2975	2650	2380	2050	1830	1600
	W1	1,9	2,8	4,5	6,9	8,9	11,62	17,74	27,0	40,18	59,5	89,45	132,0	191,11
	W2	2,0	2,9	4,6	6,0	6,55	10,92	15,86	24,59	35,34	50,47	77,80	111,96	165,24
Poids (3) (kg)	W3	2,8	4,3	6,6	10,0	10,84	15,14	21,24	33,03	47,80	69,32	104,63	151,78	222,39
	Total	6,7	10,0	15,7	22,9	26,3	37,7	54,8	84,6	123,3	179,3	271,9	395,7	578,7
	J1	0,002	0,004	0,008	0,018	0,026	0,050	0,101	0,203	0,392	0,756	1,491	2,872	5,330
Inertie (3) (kg m²)	J2	0,006	0,014	0,019	0,049	0,072	0,149	0,273	0,560	1,041	1,898	3,867	7,188	13,680
	J3	0,005	0,013	0,025	0,05	0,058	0,116	0,194	0,406	0,748	1,345	2,719	4,955	9,565
Désalignement autorisé (2)														
Radial (mm)		0,8	0,8	0,8	1,2	1,5	1,6	1,6	1,6	1,9	2,1	2,4	2,8	3,3
Axial (mm)		0,8	1,2	1,2	1,2	1,25	1,5	1,75	2	2,25	2,5	2,75	3,25	3,5
Angulaire (degré)		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5

⁽¹⁾ Pour un fonctionnement supérieur à 80 % de la vitesse d'accouplement maximum déclarée, il est recommandé que l'accouplement soit équilibré dynamiquement.


⁽²⁾ Les installations doivent être alignées aussi précisément que possible au départ. Pour prendre en compte la détérioration de l'alignement dans le temps, il est préférable que l'alignement initial ne dépasse pas 25 % des données ci-dessus. Les forces appliquées aux machines motrices et entraînées doivent être calculées pour éviter qu'elles ne dépassent les limites autorisées par le fabricant.

⁽³⁾ Les poids et inerties sont calculés avec un alésage moyen pour les accouplements jusqu'au PM600 compris et avec un alésage maximum à partir du PM900.

⁽⁴⁾ Les arbres surdimensionnés peuvent être montés dans des brides d'entraînement à large bossage fabriquées en conformité avec les exigences du client.

⁽⁵⁾ Les brides d'entraînement pour PMO,4 - PM3 sont disponibles avec des alésages pleins sur demande.

Arbre PM à arbre PM 180 à PM 7000

Dimensions, poids, inertie et alignement

Taille d'accouple	ment	180	270	400	600	850	1200	2000	3500	4700	7000
	А	798	925	1065	1195	1143	1320,8	1574,8	2006,6	2006,6	2006,6
	В	544	623	710,5	812	831	869	1035	1245	1447	1877
	С	8	9	10,5	12	6,35	6,35	6,35	12,7	12,7	12,7
	D	268	307	350	400	406	425	508	507	711	875
	D1	268	307	350	400	406	425	508	507	711	875
	Е	415	475	542	620	648	762	965	1016	1220	1370
	F	750	865	992	1122	1066,8	1239,9	1473,2	1892,3	1892,3	1892,3
Dimensions (mm)	J	33,5	36	43	52	44,5	50,8	63,5	76	76	76
	Q	12	12	12	12	20	20	20	24	24	24
	R	M24	M30	M36	M36	M30	M30	M36	M36	M36	M36
	S T W MAX. X & Y (4) MIX. X	20 M24 252 268 167	20 M30 288,5 307 192	20 M36 328 350 232	24 M36 376 400 285	20 M36 425,5 400 343	20 M36 444,5 457 381	20 M45 514,4 559 457	24 M48 520,7 612 533	24 M48 643,5 711 609	24 M48 1003,3 813 686
	MIN. Y	170	195	235	285	343	381	457	533	609	686
	Par cavité	2	2	2	2	2	3	3	3	4	6
Éléments en caoutchouc	Par accouplement	32	32	32	32	48	78	84	96	128	192
Vitesse maximale [tr/min] (1)		1460	1260	1090	975	1000	870	725	580	580	580
	W1	262,3	389,0	562,4	813,3	1059,9	1633,3	2594,6	5263,3	6450,8	8644,4
D.: 1. (2) (l)	W2	266,78	414,0	633,4	909,1	710,3	965,1	1670,9	2732,2	3921,2	4895,6
Poids (3) (kg)	W3	297,4	437,3	651,2	946,7	929,8	1388,8	2631,4	4185,5	7196,1	7742,9
	Total	826,5	1240,3	1847	2669,1	2700,0	3987,2	6896,9	12181,0	17568,1	21282,9
	J1	9,14	17,88	34,03	65,54	103,97	221,36	493,67	1653,41	2145,76	3063,85
Inertie (3) (kg m²)	J2	28,80	59,30	119,5	220,2	163,89	306,74	743,28	2075,48	3056,46	3755,94
	J3	15,35	29,89	60,66	115,7	105,01	212,24	587,70	1466,3	2637,60	2927,67
Désalignement autorisé (2)											
Radial (mm)		3,5	3,9	4,6	5,2	2,8	3,3	3,3	3,3	3,3	3,3
Axial (mm)		4,0	4,5	5,25	6,0	3,2	3,2	4,8	6,3	6,3	6,3
Angulaire (degré)		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5

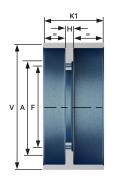
⁽¹⁾ Pour un fonctionnement supérieur à 80 % de la vitesse d'accouplement maximum déclarée, il est recommandé que l'accouplement soit équilibré dynamiquement.

⁽²⁾ Les installations doivent être alignées aussi précisément que possible au départ. Pour prendre en compte la détérioration de l'alignement dans le temps, il est préférable que l'alignement initial ne dépasse pas 25 % des données ci-dessus. Les forces appliquées aux machines motrices et entraînées doivent être calculées pour éviter qu'elles ne dépassent les limites autorisées par le fabricant.

⁽³⁾Les poids et inerties sont calculés avec un alésage moyen pour les accouplements jusqu'au PM600 compris et avec un alésage maximum à partir du PM900.

⁽⁴⁾ Les arbres surdimensionnés peuvent être montés dans des brides d'entraînement à large bossage fabriquées en conformité avec les exigences du client.

Accouplements PM pour moteur de laminoir



pour laminoir

W
Point de mesure

A F G Y

Accouplement de moteur

Tambour de frein

Des tambours de freins peuvent être associés toute la gamme d'accouplement PM et peuvent être boulonnés sur la bride d'entraînement ou la moitié flexible de l'accouplement. Le creux - ØA - est situé sur le diamètre extérieur de l'accouplement.

Les tambours de freins recommandés pour chaque taille d'accouplement sont indiqués dans le tableau. Toutefois, le øV peut être dimensionné pour les applications « non-standard ».

Tableau des dimensions des accouplements de type PM-SDW (moteur Ingot)

Taille d'accouplem	nent	0,	7	1,3	3	(ŝ	12		18	
Taille de carcasse de	moteur	180M	180L	225L	250L	280M	280L	355L	400L	400LX	450L
ch		12,7	16	26	43	63	82	123	170	228	300
tr/min		956	958	730	732	734	735	590	590	591	592
	А	187,3	187,3	215,9	260,3	260	260	338	338	392	392
	В	168	168	178	215	231	231	284,5	324,5	341	341
	С	2	2	2	3	3	3	3,5	3,5	4	4
	D1	54	54	64	70	86	86	109	109	125	125
	F	171,4	171,4	196,8	235	240	240	312	312	360	360
	G	157	157	181	214,3	222	222	280	280	320	320
	Н	15,3	20,3	18,7	18,9	23,5	23,5	23,5	25,5	26	26
	J	11	11	12	14,5	11	11	14	14	16	16
Dimensions (mm)	K	100	100	125	140	155	185	205	205	205	215
Difficusions (min)	K1	90	110	110	140	180	180	180	225	225	225
	L	42	42	55	60	75	75	95	100	100	110
	L1 M	70 84	70 84	90 84	105 107	120 107	120 107	135 132	155 167	155 167	170 167
	N	28	28	28	35	35	35	40	45	45	45
	Р	112	112	112	142	142	142	172	212	212	212
	V	250	315	315	400	500	500	500	630	630	630
	W	36	46	46	60	81	81	102	102	118	118
	MIN. Y MAX. Y	27 51	27 51	38 64	49 73	50 85	50 85	72 109	72 109	80 125	80 125
	Z	3	3	3	3	3	3	3	5	5	5

Les puissances de moteur sont données pour les classes de service périodique S4 et S5, 150 démarrages par heure avec un facteur de durée cyclique à 40 %. Pour les moteurs fonctionnant hors de ces puissances, consultez Renold Hi-Tee Couplings.

Accouplements PM pour moteur de laminoir

Tableau des dimensions des accouplements de type PM-MM (moteur AISE)

Moteurs de laminoir série 6

Taille d'accouple	ment	0,4	0,	,7	1,3	3	6	1	2	18		27		40
Taille de carcasse de	e moteur	602	603	604	606	608	610	612	614	616	618	620	622	624
ch		7	10	15	25	35	50	75	100	150	200	275	375	500
tr/min		800	725	650	575	525	500	475	460	450	410	390	360	340
	Α	161,9	187,3	187,3	215,9	260,3	260	338	338	392	440	440	440	490
	В	153	172	172	196	219	237	281,5	281,5	318	336,5	336,5	392,5	466
	С	1	2	2	2	3	3	3,5	3,5	4	4,5	4,5	4,5	5
	D1	51	54	54	64	70	86	109	109	125	143	143	143	162
	F	146	171,4	171,4	196,8	235	240	312	312	360	407	407	407	458
	G	133	157	157	181	221	222	280	280	320	367	367	367	418
	Н	13,5	15,3	15,3	18,7	18,9	18,5	15,3	15,3	21	21	21	21	21
	J	9,5	11	11	12	14,5	11	14	14	16	18,5	18,5	18,5	21
Di()	K	102	121	121	133	171	178	190	216	241	254	305	305	305
Dimensions (mm)	K1	83	95	95	146	146	171	222	222	286	286	286	286	286
	L	44,45	50,80	50,80	63,50	76,20	82,55	92,07	107,95	117,47	127,00	149,22	158,75	177,80
	L1	76,2	88,9	88,9	101,6	123,8	127	158,7	158,7	181	203,2	228,6	228,6	228,6
	M	70	83	83	95	111	111	124	124	137	149	168	178	232
	N	31	33	33	35	35	37	45	45	52	40	51	67	67
	Р	101	116	116	130	146	148	169	169	189	189	219	245	299
	V	203	254	254	330	330	406	483	483	584	584	584	584	584
	W	36	39	39	46	60	81	102	102	118	134	134	152,7	152,7
	MIN. Y	22	27	27	38	49	50	72	72	80	92	92	92	105
	MAX. Y	41	51	51	64	73	85	109	109	125	143	143	143	162
	Z	3	3	3	3	3	3	3	3	5	5	5	5	5

Moteurs de laminoir série 8

Taille d'accouplement		0.	4	0,7	1,3	3	3	6	1	2	18	27
Taille de carcasse de		802	802	803	804	806	808	810	812	814	816	818
	inoteur	7,5										
ch	ch		10	15	20	30	50	70	100	150	200	250
tr/min		800	800	725	650	575	525	500	475	460	450	410
	Α	161,9	161,9	187,3	215,9	260,3	260,3	260	338	338	392	440
	В	153	153	172	182	203	219	237	281,5	281,5	318	336,
	С	1	1	2	2	3	3	3	3,5	3,5	4	4,5
	D1	51	51	54	64	70	70	86	109	109	125	143
	F	146	146	171,4	196,8	235	235	240	312	312	360	407
	G	133	133	157	181	221	221	222	280	280	320	36
	Н	13,5	15,3	15,3	18,7	18,9	18,5	18,5	18,5	18,5	21	21
	J	9,5	9,5	11	12	14,5	14,5	11	14	14	16	18,
Di	K	102	102	121	121	133	171	178	190	216	241	25
Dimensions (mm)	K1	83	95	95	146	146	171	171	222	222	286	28
	L	44,45	44,45	50,80	50,80	63,50	76,20	82,55	92,07	107,95	117,47	127,
	L1	76,2	76,2	88,9	88,9	101,6	123,8	127	158,7	158,7	181	203
	M	70	70	83	83	95	111	111	124	124	137	14
	N	31	31	33	33	35	35	37	45	45	52	40
	Р	101	101	116	116	130	146	148	169	169	189	18
	V	203	254	254	330	330	406	406	483	483	584	58
	W	36	36	39	46	60	60	81	102	102	118	13
	MIN. Y	22	22	27	38	49	49	50	72	72	80	92
	MAX. Y	41	41	51	64	73	73	85	109	109	125	14
	Z	3	3	3	3	3	3	3	3	3	5	5

Caractéristiques techniques du PM

1.1 Détermination des caractéristiques de vibration de torsion du système

Une détermination correcte des caractéristiques de vibration de torsion du système peut être établie avec la méthode suivante :

- 1.1.1 Utilisez la résistance à la torsion, indiquée dans les caractéristiques techniques, qui est basée sur des données mesurées à une température ambiante de 30°C (C _{Tdyn}).
- 1.1.2 Répétez le calcul le calcul effectué au point 1.1.1 én utilisant cette fois le facteur de correction de température maximum St_{100} et le facteur de correction de dilatation dynamique M100 pour le caoutchouc sélectionné. Utilisez les tableaux ci-dessous pour ajuster les valeurs de résistance à la torsion et de dilatation dynamique. c.-à·d. C $_{Tdyn} = C_{Tdyn} \ X \ S_{t100}$

Qualité de caoutchouc	Temp _{max} °C	S _t
SM60	100	$S_{t100} = 0,60$
SM70	100	$S_{t100} = 0,44$
SM80	100	$S_{t100} = 0,37$

SM60 est considéré comme la « norme »

Qualité de caoutchouc	Dilatation dynamique à 30°C (M ₃₀)	Dilatation dynamique à 100°C (M ₁₀₀)
SM60	8	13,1
SM70	6	13,6
SM80	4	10,8

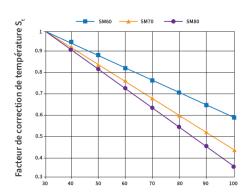
SM60 est considéré comme la « norme »

1.1.3 Consultez les calculs des paragraphes 1.1.1 et 1.1.2 et si la plage de vitesse est exempte de points critiques qui ne dépassent pas la valeur de dissipation de chaleur admissible (indiquée dans le catalogue), alors l'accouplement est jugé adapté à l'application en ce qui concerne les caractéristiques de résistance à la torsion. S'il existe un point critique dans la plage de vitesse, la température réelle de l'accouplement doit être calculée.

1.2 Détermination de la température réelle de l'accouplement et de la résistance à la torsion

- 1.2.1 Utilisez la résistance à la torsion, telle qu'elle est énoncée dans le catalogue, qui est basée sur les données mesurées à 30°C et la dilatation dynamique à 30°C (M₃₀).
- 1.2.2 Comparez la synthèse de la charge thermique calculée dans l'accouplement (PK) à la vitesse voulue et la « Dissipation de chaleur admissible » (PKW).

La température de l'accouplement augmente


$$^{\circ}$$
C = Temp_{accoup} = $\left(\frac{Pk}{Pkw}\right)$ x 70

La température de l'accouplement = 9

$$\vartheta = \text{Temp}_{\text{accoup}} + \text{Temp. ambiante}$$

- 1.2.3 Calculez le facteur de correction de la température St d'après 1.3 (si la température de l'accouplement est > 100°C, utilisez S_{t100}). Calculez la dilatation dynamique d'après 1.4. Répétez le calcul avec la nouvelle valeur de rigidité de l'accouplement et de dilatation dynamique.
- 1.2.4 Calculez la température de l'accouplement d'après 1.2.
 Répétez le calcul jusqu'à ce que la température de
 l'accouplement corresponde aux facteurs de correction de
 résistance à la torsion et de dilatation dynamique utilisés pour
 le calcul.

1.3 Facteur de correction de température

Température du caoutchouc°C

1.4 Facteur de correction de dilatation dynamique

La dilatation dynamique du caoutchouc est soumise à la variation de température tout comme la résistance à la torsion.

$$M_{T} = M_{30} \qquad \psi_{T} = \psi_{30} \times S_{t}$$

Qualité de caoutchouc	Dilatation dynamique (M₃₀)	Amortissement relatif ψ₃₀
SM60	8	0,78
SM70	6	1,05
SM80	4	1,57

SM60 est considéré comme la « norme »

Caractéristiques techniques du PM - Blocs standard

PM 0,4 - PM 130

Taille d'accoupleme	ent	0,4	0,7	1,3	3	6	8	12	18	27	40	60	90	130
kW/tr/min		0,045	0,07	0,14	0,32	0,63	0,84	1,25	1,89	2,83	4,19	6,28	9,43	13,62
Couple maximum T _{Kmax}	(kNm)	0,43	0,67	1,3	3,0	6,0	8,0	12,0	18,0	27,0	40,0	60,0	90,0	130,0
Couple de vibration T _{KW}	(kNm)(2)	0,054	0,084	0,163	0,375	0,75	1,0	1,5	2,25	3,375	5,0	7,5	11,25	16,25
Chaleur dissipée admissibl ambiante de 30°C P _{кw}		266	322	365	458	564	562	670	798	870	1018	1159	1209	1369
Vitesse maximale (tr/	min)	7200	6300	5400	4500	4480	3860	3450	2975	2650	2380	2050	1830	1600
Résistance à la torsion dyn (MNm/rad) (3)	amique C _{Tdyn}													
	SM60	0,003	0,005	0,012	0,029	0,073	0,097	0,146	0,218	0,328	0,485	0,728	1,092	1,577
Couple nominal 0,25	SM70	0,005	0,008	0,018	0,043	0,104	0,138	0,207	0,311	0,466	0,691	1,036	1,554	2,245
	SM80	0,009	0,013	0,030	0,072	0,134	0,179	0,269	0,403	0,605	0,896	1,344	2,016	2,912
	SM60	0,005	0,008	0,019	0,046	0,104	0,138	0,207	0,311	0,466	0,691	1,036	1,554	2,245
Couple nominal 0,50	SM70	0,007	0,010	0,025	0,058	0,139	0,185	0,277	0,416	0,624	0,924	1,386	2,079	3,003
	SM80	0,010	0,015	0,036	0,086	0,181	0,241	0,361	0,542	0,813	1,204	1,806	2,709	3,913
	SM60	0,008	0,012	0,029	0,069	0,154	0,205	0,308	0,462	0,693	1,027	1,540	2,310	3,337
Couple nominal 0,75	SM70	0,009	0,014	0,033	0,078	0,199	0,265	0,398	0,596	0,895	1,325	1,988	2,982	4,307
	SM80	0,012	0,018	0,043	0,102	0,265	0,353	0,529	0,794	1,191	1,764	2,646	3,969	5,733
	SM60	0,011	0,018	0,043	0,102	0,224	0,299	0,448	0,672	1,008	1,493	2,240	3,360	4,853
Couple nominal 1,0	SM70	0,012	0,018	0,044	0,105	0,277	0,370	0,554	0,832	1,247	1,848	2,772	4,158	6,006
	SM80	0,014	0,021	0,051	0,122	0,382	0,510	0,764	1,147	1,720	2,548	3,822	5,733	8,281
Rigidité radiale (N/mm)	SM60	685	723	1240	2050	6276	6966	7980	9140	10460	11069	12680	14500	16400
sans charge	SM70	1070	1130	1950	3240	8400	9320	10680	12230	14000	15960	18280	20916	23646
	SM80	1740	1820	3210	5190	11400	12650	14500	16600	19000	21660	24810	28200	32100
Pintalis (and the last /N / and)	SM60	1430	1510	2600	4300	13180	14630	16780	19200	21970	25050	28700	32820	37110
Rigidité radiale (N/mm) à 50 % T _{Kmax}	SM70	1760	1860	3200	5240	13800	15320	17550	20100	23000	26220	30040	34360	38850
30 70 Filliax	SM80	2510	2650	4480	7450	16500	18320	20980	24000	27500	31350	35910	41100	46450
	SM60	458	502	714	970	1060	1176	1347	1543	1766	2010	2306	2638	2980
Rigidité axiale (N/mm) sans charge	SM70	753	828	1180	1610	2748	3050	3495	4000	4580	5220	5980	6840	7740
sails charge	SM80	1040	1160	1670	2230	4120	4573	5240	6000	6867	7828	8968	10260	11600
	SM60	920	1050	1540	2020	2300	2500	2920	3310	3830	4360	4980	5720	6460
Rigidité axiale (N/mm) à	SM70	1100	1360	1920	2610	2750	3050	3500	4000	4580	5220	5980	6840	7740
50 % T _{Kmax}	SM80	1250	1450	2060	2750	4120	4570	5240	6000	6870	7830	8970	10260	11600
	SM60	66	72	102	128	1501	1668	1913	2178	2502	2845	3267	3728	4218
Force axiale Max. (N) à	SM70	78	80	112	140	1648	1825	2099	2374	2747	3139	3581	4101	4640
50 % T _{Kmax} (1)	SM80	85	106	148	185	2237	2482	2845	3257	3728	4265	4866	5572	6298

(3) Ces valeurs doivent être corrigées pour la température du caoutchouc comme indiqué dans la section sur les informations de conception.

$$T_{KN} = \frac{T_{Kmax}}{3}$$

 $^{(1) \} Les \ accouplements \ {\it ``glisseront"} \ {\it ``dans le sens axial lorsque la force axiale maximale sera atteinte}.$

⁽²⁾ À 10 Hz seulement, le couple de vibration admissible aux fréquences plus basses ou plus élevées fe = T KW

Caractéristiques techniques du PM - Blocs standard

PM 180- PM 7000

Taille d'accouplem	ent	180	270	400	600	850	1200	2000	3500	4700	7000
kW/tr/min		18,86	28,29	41,91	62,86	89,01	125,67	209,45	366,53	492,20	733,06
Couple maximum T Kmax	(kNm)	180,0	270,0	400,0	600,0	850,0	1200	2000	3500	4700	7000
Couple de vibration T _{KW}	(kNm)(2)	22,5	33,75	50,00	75,00	106,2	150,0	250,0	437,5	587,5	875,0
	Chaleur dissipée admissible à temp. ambiante de 30°C P _{KW} (W)		1735	1985	2168						
Vitesse maximale (tr	/min)	1460	1260	1090	975	1000	870	725	580	580	580
Résistance à la torsion dy (MNm/rad) (3)	namique C _{Tdyn}										
	SM60	2,184	3,276	4,853	7,280	14,600	22,500	40,800	74,900	102,000	148,000
Couple nominal 0,25	SM70	3,108	4,662	6,838	10,360	22,000	34,000	61,700	114,000	154,000	225,000
	SM80	4,032	6,048	8,960	13,440	36,600	56,500	102,000	195,000	257,000	376,000
	SM60	3,108	4,661	6,838	10,360	23,100	35,500	64,000	117,000	161,000	232,000
Couple nominal 0,50	SM70	4,158	6,237	9,240	13,860	29,900	46,100	83,300	153,000	209,000	304,000
	SM80	5,418	8,127	12,040	18,060	43,800	67,600	123,000	226,000	307,000	443,000
	SM60	4,620	6,720	10,269	15,400	36,000	55,300	99,100	178,000	249,000	358,000
Couple nominal 0,75	SM70	5,964	8,946	13,251	19,880	40,600	62,400	115,000	205,000	232,000	409,000
	SM80	7,938	11,907	17,64	26,480	52,500	80,900	147,000	268,000	367,000	534,000
	SM60	6,720	10,080	14,931	22,400	54,000	82,900	149,000	265,000	372,000	533,000
Couple nominal 1,0	SM70	8,316	12,474	18,480	27,720	54,700	84,100	151,000	272,000	379,000	546,000
	SM80	11,466	17,199	25,480	38,220	63,000	97,100	175,000	320,000	439,000	638,000
	SM60	18270	20920	23820	27300	37800	41900	54900	57500	76500	115000
Rigidité radiale (N/mm)	SM70	26350	30170	34340	39370	60300	66200	87300	91100	122000	182000
sans charge	SM80	35750	40945	46600	53400	95800	105000	140000	145800	195000	291000
	SM60	41350	47350	53890	61780	85540	94820	124240	130120	173345	260245
Rigidité radiale (N/mm) à	SM70	43290	49560	56420	64680	99073	108766	143434	149677	200446	299026
50 % T _{Kmax}	SM80	51760	59260	67460	77330	38714	152040	202720	211118	282360	421368
	SM60	3324	3800	4332	4966	18200	20800	27700	28400	37800	56700
Rigidité axiale (N/mm)	SM70	8620	9870	11230	12880	30300	34300	45600	47000	62700	94000
sans charge	SM80	12924	14800	16844	19310	35000	39800	49300	75000	100000	150000
Rigidité axiale (N/mm) à	SM60	7200	8240	9380	10760	39440	45074	60026	61543	81913	122869
Figidite axiale (N/mm) a 50 % T _{Kmax}	SM70	8620	9870	11230	12880	30300	34300	45600	47000	62700	94000
	SM80	12920	14800	16840	19310	35000	39800	49300	75000	100000	150000
Force axiale Max. (N) à	SM60	4709	5396	6131	7034	-	-	-	-	-	-
50 % T _{Kmax} (1)	SM70	5160	5915	6730	7720	-	-	-	-	-	-
	SM80	7014	8025	9143	10477	-	-	-	-	-	-

(3) Ces valeurs doivent être corrigées pour la température du caoutchouc comme indiqué dans la section sur les informations de conception.

$$T_{KN} = \frac{T_{Kmax}}{3}$$

 $^{(1) \} Les \ accouplements \ {\it ``glisseront"} \ {\it ``dans le sens axial lorsque la force axiale maximale sera atteinte}.$

⁽²⁾ À 10 Hz seulement, le couple de vibration admissible aux fréquences plus basses ou plus élevées fe = T KW

Caractéristiques techniques des accouplements PM - Blocs ronds spéciaux

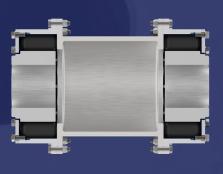
PM 12 - PM 600

Taille d'accoupleme	nt	12	18	27	40	60	90	130	180	270	400	600
kW/tr/min		1,25	1,89	2,83	4,19	6,28	9,43	13,62	18,86	28,29	41,91	62,86
Couple maximum T _{KN}	(kNm)	3,2	4,8	7,2	10,67	15,99	24,0	34,67	48,0	72,0	106,67	159,99
Couple maximum Tkmax	(kNm)	12,0	18,0	27,0	40,0	60,0	90,0	130,0	180,0	270,0	400,0	600,0
Couple de vibration TKW	(kNm)(2)	1,0	1,5	2,25	3,334	5,0	7,5	10,833	15,0	22,5	29,0	42,75
Chaleur dissipée admissibl ambiante de 30°С Ркw		130	150	180	220	260	300	340	375	440	490	565
Vitesse maximale (tr/r	min)	3450	2975	2650	2380	2050	1830	1600	1460	1260	1090	975
Résistance à la torsion dyna (MNm/rad) (3)	amique C _{Tdyn}											
	SM60	0,053	0,08	0,12	0,18	0,27	0,613	0,885	1,226	1,839	2,724	4,087
Couple nominal 0,25	SM70	0,072	0,109	0,163	0,241	0,362	0,895	1,293	1,79	2,685	3,978	5,967
	SM80	0,1	0,149	0,224	0,322	0,498	0,747	1,079	1,493	2,24	3,319	4,98
	SM60	0,088	0,132	0,198	0,293	0,44	0,791	1,143	1,582	2,373	3,516	5,273
Couple nominal 0,50	SM70	0,104	0,155	0,233	0,345	0,52	1,05	1,517	2,1	3,15	4,667	7
	SM80	0,159	0,239	0,358	0,53	0,796	1,193	1,724	2,387	3,58	5,304	7,956
	SM60	0,168	0,251	0,377	0,559	0,84	1,154	1,667	2,308	3,462	5,129	7,693
Couple nominal 0,75	SM70	0,162	0,243	0,364	0,539	0,809	1,317	1,902	2,634	3,951	5,853	8,78
	SM80	0,214	0,321	0,481	0,713	1,069	1,603	2,316	3,207	4,81	7,126	10,689
	SM60	0,285	0,427	0,641	0,948	1,424	1,91	2,759	3,82	5,73	8,489	12,733
Couple nominal 1,0	SM70	0,256	0,385	0,577	0,855	1,282	1,85	2,672	3,7	5,55	8,222	12,333
	SM80	0,328	0,491	0,737	1,092	1,638	2,457	3,549	4,913	7,37	10,919	16,378
	SM60	2619	3000	3433	3914	4497	5132	5798	6464	7398	8438	9657
Rigidité radiale (N/mm) sans charge	SM70	3742	4286	4905	5592	6425	7333	8284	9236	10570	12050	13798
Janis Charge	SM80	6138	7030	8044	9170	10538	12025	13586	15147	17335	17335	22628
	SM60	9510	10900	12470	14215	16300	18640	21000	23480	26870	30650	35070
Rigidité radiale (N/mm) à T _{KN}	SM70	9056	10374	11870	13530	15550	17745	20048	22350	25580	29176	33390
	SM80	9132	10460	11968	13644	15678	17892	20214	22535	25790	29410	33666
	SM60	1122	1285	1470	1675	1925	2198	2482	2768	3168	3613	4135
Rigidité axiale (N/mm)	SM70	1495	1710	1960	2234	2568	2930	3310	3690	4220	4818	5514
sans charge	SM80	2545	2915	3335	3800	4368	4986	5632	6278	7187	8197	9380
	SM60	2918	3340	3825	4360	5010	5718	6460	7200	8242	9400	10750
Rigidité axiale (N/mm)	SM70	3067	3510	4020	4580	5266	6000	6790	7570	8660	9880	11300
à T _{KN}	SM80	3218	3686	4218	4808	5526	6306	7124	7942	9090	10368	11865
Force axiale Max. (N) à T _{KN} (1)		2943	3335	3728	4415	5003	5690	6475	7161	8240	9418	10791

⁽²⁾ À 10 Hz seulement, le couple de vibration admissible aux fréquences plus basses ou plus élevées fe = TKW.

(3) Ces valeurs doivent être corrigées pour la température du caoutchouc comme indiqué dans la section sur les informations de conception.

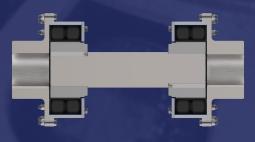
 $^{(1) \} Les \ accouplements \ {\it ``glisseront"} \ {\it ``dans le sens axial lorsque la force axiale maximale sera atteinte}.$


Variantes de conception

L'accouplement PM peut être adapté en fonction des besoins du client, comme le montrent les variantes de conception représentées ci-dessous. Pour une liste plus complète, contactez Renold Hi-Tec.

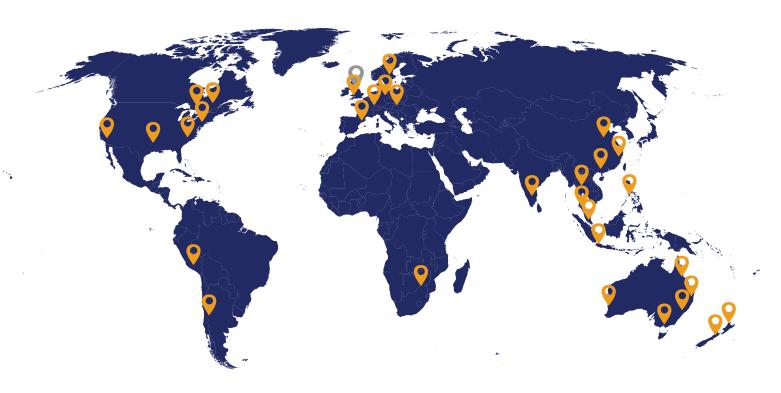
Accouplement à disque de frein

Accouplement entretoise



Association avec un disque de frein pour grues, ventilateurs et entraînements de convoyeurs.

(Accouplements de tambour de frein également disponibles).


Accouplements entretoises. Utilisés pour augmenter la distance entre les extrémités d'arbre et faciliter l'accès aux machines motrices et entraînées.

Accouplement d'arbre à cardan

Accouplement d'arbre à cardan. Utilisé pour augmenter la distance entre les extrémités d'arbres et pour donner une capacité de désalignement supérieure.

Services internationaux

Adresses Renold

Assistance interne

L'équipe commerciale est installée dans l'usine de fabrication et possède des connaissances inégalées des produits.

Grande équipe technique

Notre équipe peut concevoir un accouplement de qualité qui répond exactement à vos exigences.

Usine de fabrication

Conçus et fabriqués en interne par Renold, pour un contrôle ultime de nos solutions.

Histoire et longévité

Fabrication au Royaume-Uni depuis plus d'un siècle et engagement à long terme dans nos installations. Nous sommes là pour la durée.

Excellence de la communication

Les points hebdomadaires sur les commandes de notre équipe commerciale toujours disponible et notre réseau commercial mondial facilitent la communication.

Investissement record

Un investissement lourd dans notre entreprise. Nous avons dépensé des millions de livres sterling dans le renouvellement de nos équipements à commande numérique, nos bras de mesure, les logiciels et bancs d'essai les plus récents.

